DatasetAgent: A Novel Multi-Agent System for Auto-Constructing Datasets from Real-World Images (2507.08648v1)
Abstract: Common knowledge indicates that the process of constructing image datasets usually depends on the time-intensive and inefficient method of manual collection and annotation. Large models offer a solution via data generation. Nonetheless, real-world data are obviously more valuable comparing to artificially intelligence generated data, particularly in constructing image datasets. For this reason, we propose a novel method for auto-constructing datasets from real-world images by a multiagent collaborative system, named as DatasetAgent. By coordinating four different agents equipped with Multi-modal LLMs (MLLMs), as well as a tool package for image optimization, DatasetAgent is able to construct high-quality image datasets according to user-specified requirements. In particular, two types of experiments are conducted, including expanding existing datasets and creating new ones from scratch, on a variety of open-source datasets. In both cases, multiple image datasets constructed by DatasetAgent are used to train various vision models for image classification, object detection, and image segmentation.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.