Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Rethinking Spatio-Temporal Anomaly Detection: A Vision for Causality-Driven Cybersecurity (2507.08177v1)

Published 10 Jul 2025 in cs.LG, cs.AI, cs.ET, and cs.NE

Abstract: As cyber-physical systems grow increasingly interconnected and spatially distributed, ensuring their resilience against evolving cyberattacks has become a critical priority. Spatio-Temporal Anomaly detection plays an important role in ensuring system security and operational integrity. However, current data-driven approaches, largely driven by black-box deep learning, face challenges in interpretability, adaptability to distribution shifts, and robustness under evolving system dynamics. In this paper, we advocate for a causal learning perspective to advance anomaly detection in spatially distributed infrastructures that grounds detection in structural cause-effect relationships. We identify and formalize three key directions: causal graph profiling, multi-view fusion, and continual causal graph learning, each offering distinct advantages in uncovering dynamic cause-effect structures across time and space. Drawing on real-world insights from systems such as water treatment infrastructures, we illustrate how causal models provide early warning signals and root cause attribution, addressing the limitations of black-box detectors. Looking ahead, we outline the future research agenda centered on multi-modality, generative AI-driven, and scalable adaptive causal frameworks. Our objective is to lay a new research trajectory toward scalable, adaptive, explainable, and spatially grounded anomaly detection systems. We hope to inspire a paradigm shift in cybersecurity research, promoting causality-driven approaches to address evolving threats in interconnected infrastructures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.