Towards Safe Autonomous Driving: A Real-Time Safeguarding Concept for Motion Planning Algorithms (2507.07444v1)
Abstract: Ensuring the functional safety of motion planning modules in autonomous vehicles remains a critical challenge, especially when dealing with complex or learning-based software. Online verification has emerged as a promising approach to monitor such systems at runtime, yet its integration into embedded real-time environments remains limited. This work presents a safeguarding concept for motion planning that extends prior approaches by introducing a time safeguard. While existing methods focus on geometric and dynamic feasibility, our approach additionally monitors the temporal consistency of planning outputs to ensure timely system response. A prototypical implementation on a real-time operating system evaluates trajectory candidates using constraint-based feasibility checks and cost-based plausibility metrics. Preliminary results show that the safeguarding module operates within real-time bounds and effectively detects unsafe trajectories. However, the full integration of the time safeguard logic and fallback strategies is ongoing. This study contributes a modular and extensible framework for runtime trajectory verification and highlights key aspects for deployment on automotive-grade hardware. Future work includes completing the safeguarding logic and validating its effectiveness through hardware-in-the-loop simulations and vehicle-based testing. The code is available at: https://github.com/TUM-AVS/motion-planning-supervisor
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.