Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

LinguaMark: Do Multimodal Models Speak Fairly? A Benchmark-Based Evaluation (2507.07274v1)

Published 9 Jul 2025 in cs.CV, cs.AI, and cs.CL

Abstract: Large Multimodal Models (LMMs) are typically trained on vast corpora of image-text data but are often limited in linguistic coverage, leading to biased and unfair outputs across languages. While prior work has explored multimodal evaluation, less emphasis has been placed on assessing multilingual capabilities. In this work, we introduce LinguaMark, a benchmark designed to evaluate state-of-the-art LMMs on a multilingual Visual Question Answering (VQA) task. Our dataset comprises 6,875 image-text pairs spanning 11 languages and five social attributes. We evaluate models using three key metrics: Bias, Answer Relevancy, and Faithfulness. Our findings reveal that closed-source models generally achieve the highest overall performance. Both closed-source (GPT-4o and Gemini2.5) and open-source models (Gemma3, Qwen2.5) perform competitively across social attributes, and Qwen2.5 demonstrates strong generalization across multiple languages. We release our benchmark and evaluation code to encourage reproducibility and further research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.