Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Prompt Perturbations Reveal Human-Like Biases in LLM Survey Responses (2507.07188v1)

Published 9 Jul 2025 in cs.CL, cs.AI, and cs.CY

Abstract: LLMs are increasingly used as proxies for human subjects in social science surveys, but their reliability and susceptibility to known response biases are poorly understood. This paper investigates the response robustness of LLMs in normative survey contexts -- we test nine diverse LLMs on questions from the World Values Survey (WVS), applying a comprehensive set of 11 perturbations to both question phrasing and answer option structure, resulting in over 167,000 simulated interviews. In doing so, we not only reveal LLMs' vulnerabilities to perturbations but also reveal that all tested models exhibit a consistent \textit{recency bias} varying in intensity, disproportionately favoring the last-presented answer option. While larger models are generally more robust, all models remain sensitive to semantic variations like paraphrasing and to combined perturbations. By applying a set of perturbations, we reveal that LLMs partially align with survey response biases identified in humans. This underscores the critical importance of prompt design and robustness testing when using LLMs to generate synthetic survey data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.