Conformal Prediction for Long-Tailed Classification (2507.06867v1)
Abstract: Many real-world classification problems, such as plant identification, have extremely long-tailed class distributions. In order for prediction sets to be useful in such settings, they should (i) provide good class-conditional coverage, ensuring that rare classes are not systematically omitted from the prediction sets, and (ii) be a reasonable size, allowing users to easily verify candidate labels. Unfortunately, existing conformal prediction methods, when applied to the long-tailed setting, force practitioners to make a binary choice between small sets with poor class-conditional coverage or sets with very good class-conditional coverage but that are extremely large. We propose methods with guaranteed marginal coverage that smoothly trade off between set size and class-conditional coverage. First, we propose a conformal score function, prevalence-adjusted softmax, that targets a relaxed notion of class-conditional coverage called macro-coverage. Second, we propose a label-weighted conformal prediction method that allows us to interpolate between marginal and class-conditional conformal prediction. We demonstrate our methods on Pl@ntNet and iNaturalist, two long-tailed image datasets with 1,081 and 8,142 classes, respectively.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.