Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Edge-Boundary-Texture Loss: A Tri-Class Generalization of Weighted Binary Cross-Entropy for Enhanced Edge Detection (2507.06569v1)

Published 9 Jul 2025 in cs.CV

Abstract: Edge detection (ED) remains a fundamental task in computer vision, yet its performance is often hindered by the ambiguous nature of non-edge pixels near object boundaries. The widely adopted Weighted Binary Cross-Entropy (WBCE) loss treats all non-edge pixels uniformly, overlooking the structural nuances around edges and often resulting in blurred predictions. In this paper, we propose the Edge-Boundary-Texture (EBT) loss, a novel objective that explicitly divides pixels into three categories, edge, boundary, and texture, and assigns each a distinct supervisory weight. This tri-class formulation enables more structured learning by guiding the model to focus on both edge precision and contextual boundary localization. We theoretically show that the EBT loss generalizes the WBCE loss, with the latter becoming a limit case. Extensive experiments across multiple benchmarks demonstrate the superiority of the EBT loss both quantitatively and perceptually. Furthermore, the consistent use of unified hyperparameters across all models and datasets, along with robustness to their moderate variations, indicates that the EBT loss requires minimal fine-tuning and is easily deployable in practice.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.