Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Prediction-Augmented Mechanism Design for Weighted Facility Location (2507.06509v1)

Published 9 Jul 2025 in cs.DS, cs.GT, and cs.LG

Abstract: Facility location is fundamental in operations research, mechanism design, and algorithmic game theory, with applications ranging from urban infrastructure planning to distributed systems. Recent research in this area has focused on augmenting classic strategyproof mechanisms with predictions to achieve an improved performance guarantee against the uncertainty under the strategic environment. Previous work has been devoted to address the trade-off obstacle of balancing the consistency (near-optimality under accurate predictions) and robustness (bounded inefficiency under poor predictions) primarily in the unweighted setting, assuming that all agents have the same importance. However, this assumption may not be true in some practical scenarios, leading to research of weighted facility location problems. The major contribution of the current work is to provide a prediction augmented algorithmic framework for balancing the consistency and robustness over strategic agents with non-uniform weights. In particular, through a reduction technique that identifies a subset of \emph{representative} instances and maps the other given locations to the representative ones, we prove that there exists a \emph{strategyproof} mechanism achieving a bounded consistency guarantee of $\frac{\sqrt{(1+c)2W2_{\min}+(1-c)2W2_{\max}}}{(1+c)W_{\min}}$ and a bounded robustness guarantee of $\frac{\sqrt{(1-c)2W2_{\min}+(1+c)2W2_{\max}}}{(1-c)W_{\min}}$ in weighted settings, where $c$ can be viewed as a parameter to make a trade-off between the consistency and robustness and $W_{\min}$ and $W_{\max}$ denote the minimum and maximum agents' weight. We also proved that there is no strategyproof deterministic mechanism that reach $1$-consistency and $O\left( n \cdot \frac{W_{\max}}{W_{\min}} \right)$-robustness in weighted FLP, even with fully predictions of all agents.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.