Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Speech Quality Assessment Model Based on Mixture of Experts: System-Level Performance Enhancement and Utterance-Level Challenge Analysis (2507.06116v1)

Published 8 Jul 2025 in cs.SD, cs.AI, and eess.AS

Abstract: Automatic speech quality assessment plays a crucial role in the development of speech synthesis systems, but existing models exhibit significant performance variations across different granularity levels of prediction tasks. This paper proposes an enhanced MOS prediction system based on self-supervised learning speech models, incorporating a Mixture of Experts (MoE) classification head and utilizing synthetic data from multiple commercial generation models for data augmentation. Our method builds upon existing self-supervised models such as wav2vec2, designing a specialized MoE architecture to address different types of speech quality assessment tasks. We also collected a large-scale synthetic speech dataset encompassing the latest text-to-speech, speech conversion, and speech enhancement systems. However, despite the adoption of the MoE architecture and expanded dataset, the model's performance improvements in sentence-level prediction tasks remain limited. Our work reveals the limitations of current methods in handling sentence-level quality assessment, provides new technical pathways for the field of automatic speech quality assessment, and also delves into the fundamental causes of performance differences across different assessment granularities.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com