Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 24 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 209 tok/s Pro
2000 character limit reached

Quantifying Resolution Limits in Pedestal Profile Measurements with Gaussian Process Regression (2507.05067v1)

Published 7 Jul 2025 in physics.plasm-ph

Abstract: Edge transport barriers (ETBs) in magnetically confined fusion plasmas, commonly known as pedestals, play a crucial role in achieving high confinement plasmas. However, their defining characteristic, a steep rise in plasma pressure over short length scales, makes them challenging to diagnose experimentally. In this work, we use Gaussian Process Regression (GPR) to develop first-principles metrics for quantifying the spatiotemporal resolution limits of inferring differentiable profiles of temperature, pressure, or other quantities from experimental measurements. Although we focus on pedestals, the methods are fully general and can be applied to any setting involving the inference of profiles from discrete measurements. First, we establish a correspondence between GPR and low-pass filtering, giving an explicit expression for the effective cutoff frequency' associated with smoothing incurred by GPR. Second, we introduce a novel information-theoretic metric, \(N_{eff}\), which measures the effective number of data points contributing to the inferred value of a profile or its derivative. These metrics enable a quantitative assessment of the trade-off betweenover-fitting' and `over-regularization', providing both practitioners and consumers of GPR with a systematic way to evaluate the credibility of inferred profiles. We apply these tools to develop practical advice for using GPR in both time-independent and time-dependent settings, and demonstrate their usage on inferring pedestal profiles using measurements from the DIII-D tokamak.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube