Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Silent Failures in Stateless Systems: Rethinking Anomaly Detection for Serverless Computing (2507.04969v1)

Published 7 Jul 2025 in cs.DC

Abstract: Serverless computing has redefined cloud application deployment by abstracting infrastructure and enabling on-demand, event-driven execution, thereby enhancing developer agility and scalability. However, maintaining consistent application performance in serverless environments remains a significant challenge. The dynamic and transient nature of serverless functions makes it difficult to distinguish between benign and anomalous behavior, which in turn undermines the effectiveness of traditional anomaly detection methods. These conventional approaches, designed for stateful and long-running services, struggle in serverless settings where executions are short-lived, functions are isolated, and observability is limited. In this first comprehensive vision paper on anomaly detection for serverless systems, we systematically explore the unique challenges posed by this paradigm, including the absence of persistent state, inconsistent monitoring granularity, and the difficulty of correlating behaviors across distributed functions. We further examine a range of threats that manifest as anomalies, from classical Denial-of-Service (DoS) attacks to serverless-specific threats such as Denial-of-Wallet (DoW) and cold start amplification. Building on these observations, we articulate a research agenda for next-generation detection frameworks that address the need for context-aware, multi-source data fusion, real-time, lightweight, privacy-preserving, and edge-cloud adaptive capabilities. Through the identification of key research directions and design principles, we aim to lay the foundation for the next generation of anomaly detection in cloud-native, serverless ecosystems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets