Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Spec-TOD: A Specialized Instruction-Tuned LLM Framework for Efficient Task-Oriented Dialogue Systems (2507.04841v1)

Published 7 Jul 2025 in cs.CL

Abstract: Task-oriented dialogue (TOD) systems facilitate goal-driven interactions between users and machines. While recent advances in deep learning have improved the performance, TOD systems often struggle in low-resource scenarios with limited labeled data. To address this challenge, we propose Spec-TOD, a novel framework designed to train an end-to-end TOD system with limited data. Spec-TOD introduces two main innovations: (i) a novel specialized end-to-end TOD framework that incorporates explicit task instructions for instruction-tuned LLMs, and (ii) an efficient training strategy that leverages lightweight, specialized LLMs to achieve strong performance with minimal supervision. Experiments on the MultiWOZ dataset, a widely used TOD benchmark, demonstrate that Spec-TOD achieves competitive results while significantly reducing the need for labeled data. These findings highlight the potential of the proposed framework in advancing efficient and effective TOD systems in low-resource settings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.