Spec-TOD: A Specialized Instruction-Tuned LLM Framework for Efficient Task-Oriented Dialogue Systems (2507.04841v1)
Abstract: Task-oriented dialogue (TOD) systems facilitate goal-driven interactions between users and machines. While recent advances in deep learning have improved the performance, TOD systems often struggle in low-resource scenarios with limited labeled data. To address this challenge, we propose Spec-TOD, a novel framework designed to train an end-to-end TOD system with limited data. Spec-TOD introduces two main innovations: (i) a novel specialized end-to-end TOD framework that incorporates explicit task instructions for instruction-tuned LLMs, and (ii) an efficient training strategy that leverages lightweight, specialized LLMs to achieve strong performance with minimal supervision. Experiments on the MultiWOZ dataset, a widely used TOD benchmark, demonstrate that Spec-TOD achieves competitive results while significantly reducing the need for labeled data. These findings highlight the potential of the proposed framework in advancing efficient and effective TOD systems in low-resource settings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.