Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

IDAGC: Adaptive Generalized Human-Robot Collaboration via Human Intent Estimation and Multimodal Policy Learning (2507.04620v1)

Published 7 Jul 2025 in cs.RO

Abstract: In Human-Robot Collaboration (HRC), which encompasses physical interaction and remote cooperation, accurate estimation of human intentions and seamless switching of collaboration modes to adjust robot behavior remain paramount challenges. To address these issues, we propose an Intent-Driven Adaptive Generalized Collaboration (IDAGC) framework that leverages multimodal data and human intent estimation to facilitate adaptive policy learning across multi-tasks in diverse scenarios, thereby facilitating autonomous inference of collaboration modes and dynamic adjustment of robotic actions. This framework overcomes the limitations of existing HRC methods, which are typically restricted to a single collaboration mode and lack the capacity to identify and transition between diverse states. Central to our framework is a predictive model that captures the interdependencies among vision, language, force, and robot state data to accurately recognize human intentions with a Conditional Variational Autoencoder (CVAE) and automatically switch collaboration modes. By employing dedicated encoders for each modality and integrating extracted features through a Transformer decoder, the framework efficiently learns multi-task policies, while force data optimizes compliance control and intent estimation accuracy during physical interactions. Experiments highlights our framework's practical potential to advance the comprehensive development of HRC.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube