Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Machine Learning in Acoustics: A Review and Open-Source Repository (2507.04419v1)

Published 6 Jul 2025 in cs.SD, eess.AS, and eess.SP

Abstract: Acoustic data provide scientific and engineering insights in fields ranging from bioacoustics and communications to ocean and earth sciences. In this review, we survey recent advances and the transformative potential of ML in acoustics, including deep learning (DL). Using the Python high-level programming language, we demonstrate a broad collection of ML techniques to detect and find patterns for classification, regression, and generation in acoustics data automatically. We have ML examples including acoustic data classification, generative modeling for spatial audio, and physics-informed neural networks. This work includes AcousticsML, a set of practical Jupyter notebook examples on GitHub demonstrating ML benefits and encouraging researchers and practitioners to apply reproducible data-driven approaches to acoustic challenges.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.