Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Generating Synthetic Relational Tabular Data via Structural Causal Models (2507.03528v1)

Published 4 Jul 2025 in cs.LG, cs.AI, and stat.AP

Abstract: Synthetic tabular data generation has received increasing attention in recent years, particularly with the emergence of foundation models for tabular data. The breakthrough success of TabPFN (HoLLMann et al.,2025), which leverages vast quantities of synthetic tabular datasets derived from structural causal models (SCMs), demonstrates the critical role synthetic data plays in developing powerful tabular foundation models. However, most real-world tabular data exists in relational formats spanning multiple interconnected tables - a structure not adequately addressed by current generation methods. In this work, we extend the SCM-based approach by developing a novel framework that generates realistic synthetic relational tabular data including causal relationships across tables. Our experiments confirm that this framework is able to construct relational datasets with complex inter-table dependencies mimicking real-world scenarios.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.