Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Hummingbird: A Smaller and Faster Large Language Model Accelerator on Embedded FPGA (2507.03308v1)

Published 4 Jul 2025 in cs.AR

Abstract: Deploying LLMs on embedded devices remains a significant research challenge due to the high computational and memory demands of LLMs and the limited hardware resources available in such environments. While embedded FPGAs have demonstrated performance and energy efficiency in traditional deep neural networks, their potential for LLM inference remains largely unexplored. Recent efforts to deploy LLMs on FPGAs have primarily relied on large, expensive cloud-grade hardware and have only shown promising results on relatively small LLMs, limiting their real-world applicability. In this work, we present Hummingbird, a novel FPGA accelerator designed specifically for LLM inference on embedded FPGAs. Hummingbird is smaller, targeting embedded FPGAs such as the KV260 and ZCU104 with 67% LUT, 39% DSP, and 42% power savings over existing research. Hummingbird is stronger, targeting LLaMA3-8B and supporting longer contexts, overcoming the typical 4GB memory constraint of embedded FPGAs through offloading strategies. Finally, Hummingbird is faste, achieving 4.8 tokens/s and 8.6 tokens/s for LLaMA3-8B on the KV260 and ZCU104 respectively, with 93-94% model bandwidth utilization, outperforming the prior 4.9 token/s for LLaMA2-7B with 84% bandwidth utilization baseline. We further demonstrate the viability of industrial applications by deploying Hummingbird on a cost-optimized Spartan UltraScale FPGA, paving the way for affordable LLM solutions at the edge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube