Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Beyond Euclid: Curvature-Adaptive Generalization for Neural Networks on Manifolds (2507.02999v1)

Published 1 Jul 2025 in cs.LG, math.DG, and stat.ML

Abstract: In this work, we develop new generalization bounds for neural networks trained on data supported on Riemannian manifolds. Existing generalization theories often rely on complexity measures derived from Euclidean geometry, which fail to account for the intrinsic structure of non-Euclidean spaces. Our analysis introduces a geometric refinement: we derive covering number bounds that explicitly incorporate manifold-specific properties such as sectional curvature, volume growth, and injectivity radius. These geometric corrections lead to sharper Rademacher complexity bounds for classes of Lipschitz neural networks defined on compact manifolds. The resulting generalization guarantees recover standard Euclidean results when curvature is zero but improve substantially in settings where the data lies on curved, low-dimensional manifolds embedded in high-dimensional ambient spaces. We illustrate the tightness of our bounds in negatively curved spaces, where the exponential volume growth leads to provably higher complexity, and in positively curved spaces, where the curvature acts as a regularizing factor. This framework provides a principled understanding of how intrinsic geometry affects learning capacity, offering both theoretical insight and practical implications for deep learning on structured data domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube