Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Weakly Supervised Transformer to Support Rare Disease Diagnosis from Electronic Health Records: Methods and Applications in Rare Pulmonary Disease (2507.02998v1)

Published 1 Jul 2025 in cs.LG, cs.CL, and stat.ML

Abstract: Rare diseases affect an estimated 300-400 million people worldwide, yet individual conditions often remain poorly characterized and difficult to diagnose due to their low prevalence and limited clinician familiarity. While computational phenotyping algorithms show promise for automating rare disease detection, their development is hindered by the scarcity of labeled data and biases in existing label sources. Gold-standard labels from registries and expert chart reviews are highly accurate but constrained by selection bias and the cost of manual review. In contrast, labels derived from electronic health records (EHRs) cover a broader range of patients but can introduce substantial noise. To address these challenges, we propose a weakly supervised, transformer-based framework that combines a small set of gold-standard labels with a large volume of iteratively updated silver-standard labels derived from EHR data. This hybrid approach enables the training of a highly accurate and generalizable phenotyping model that scales rare disease detection beyond the scope of individual clinical expertise. Our method is initialized by learning embeddings of medical concepts based on their semantic meaning or co-occurrence patterns in EHRs, which are then refined and aggregated into patient-level representations via a multi-layer transformer architecture. Using two rare pulmonary diseases as a case study, we validate our model on EHR data from Boston Children's Hospital. Our framework demonstrates notable improvements in phenotype classification, identification of clinically meaningful subphenotypes through patient clustering, and prediction of disease progression compared to baseline methods. These results highlight the potential of our approach to enable scalable identification and stratification of rare disease patients for clinical care and research applications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube