Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

REDUS: Adaptive Resampling for Efficient Deep Learning in Centralized and Federated IoT Networks (2507.02021v1)

Published 2 Jul 2025 in cs.NI

Abstract: With the rise of Software-Defined Networking (SDN) for managing traffic and ensuring seamless operations across interconnected devices, challenges arise when SDN controllers share infrastructure with deep learning (DL) workloads. Resource contention between DL training and SDN operations, especially in latency-sensitive IoT environments, can degrade SDN's responsiveness and compromise network performance. Federated Learning (FL) helps address some of these concerns by decentralizing DL training to edge devices, thus reducing data transmission costs and enhancing privacy. Yet, the computational demands of DL training can still interfere with SDN's performance, especially under the continuous data streams characteristic of IoT systems. To mitigate this issue, we propose REDUS (Resampling for Efficient Data Utilization in Smart-Networks), a resampling technique that optimizes DL training by prioritizing misclassified samples and excluding redundant data, inspired by AdaBoost. REDUS reduces the number of training samples per epoch, thereby conserving computational resources, reducing energy consumption, and accelerating convergence without significantly impacting accuracy. Applied within an FL setup, REDUS enhances the efficiency of model training on resource-limited edge devices while maintaining network performance. In this paper, REDUS is evaluated on the CICIoT2023 dataset for IoT attack detection, showing a training time reduction of up to 72.6% with a minimal accuracy loss of only 1.62%, offering a scalable and practical solution for intelligent networks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.