Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

URGENT-PK: Perceptually-Aligned Ranking Model Designed for Speech Enhancement Competition (2506.23874v1)

Published 30 Jun 2025 in eess.AS and cs.SD

Abstract: The Mean Opinion Score (MOS) is fundamental to speech quality assessment. However, its acquisition requires significant human annotation. Although deep neural network approaches, such as DNSMOS and UTMOS, have been developed to predict MOS to avoid this issue, they often suffer from insufficient training data. Recognizing that the comparison of speech enhancement (SE) systems prioritizes a reliable system comparison over absolute scores, we propose URGENT-PK, a novel ranking approach leveraging pairwise comparisons. URGENT-PK takes homologous enhanced speech pairs as input to predict relative quality rankings. This pairwise paradigm efficiently utilizes limited training data, as all pairwise permutations of multiple systems constitute a training instance. Experiments across multiple open test sets demonstrate URGENT-PK's superior system-level ranking performance over state-of-the-art baselines, despite its simple network architecture and limited training data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.