Large condensation in enriched $\infty$-categories (2506.23632v1)
Abstract: Using the language of enriched $\infty$-categories, we formalize and generalize the definition of fusion n-category, and an analogue of iterative condensation of $E_i$-algebras. The former was introduced by Johnson-Freyd, and the latter by Kong, Zhang, Zhao, and Zheng. This extends categorical condensation beyond fusion n-categories to all enriched monoidal $\infty$-categories with certain colimits. The resulting theory is capable of treating symmetries of arbitrary dimension and codimension that are enriched, continuous, derived, non-semisimple and non-separable. Additionally, we consider a truncated variant of the notion of condensation introduced by Gaiotto and Johnson-Freyd, and show that iterative condensation of monoidal monads and $E_i$-algebras provide examples. In doing so, we prove results on functoriality of Day convolution for enriched $\infty$-categories, and monoidality of two versions of the Eilenberg-Moore functor, which may be of independent interest.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.