Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Competitive Distillation: A Simple Learning Strategy for Improving Visual Classification (2506.23285v1)

Published 29 Jun 2025 in cs.CV

Abstract: Deep Neural Networks (DNNs) have significantly advanced the field of computer vision. To improve DNN training process, knowledge distillation methods demonstrate their effectiveness in accelerating network training by introducing a fixed learning direction from the teacher network to student networks. In this context, several distillation-based optimization strategies are proposed, e.g., deep mutual learning and self-distillation, as an attempt to achieve generic training performance enhancement through the cooperative training of multiple networks. However, such strategies achieve limited improvements due to the poor understanding of the impact of learning directions among networks across different iterations. In this paper, we propose a novel competitive distillation strategy that allows each network in a group to potentially act as a teacher based on its performance, enhancing the overall learning performance. Competitive distillation organizes a group of networks to perform a shared task and engage in competition, where competitive optimization is proposed to improve the parameter updating process. We further introduce stochastic perturbation in competitive distillation, aiming to motivate networks to induce mutations to achieve better visual representations and global optimum. The experimental results show that competitive distillation achieves promising performance in diverse tasks and datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.