Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilling Visual Priors from Self-Supervised Learning (2008.00261v1)

Published 1 Aug 2020 in cs.CV

Abstract: Convolutional Neural Networks (CNNs) are prone to overfit small training datasets. We present a novel two-phase pipeline that leverages self-supervised learning and knowledge distillation to improve the generalization ability of CNN models for image classification under the data-deficient setting. The first phase is to learn a teacher model which possesses rich and generalizable visual representations via self-supervised learning, and the second phase is to distill the representations into a student model in a self-distillation manner, and meanwhile fine-tune the student model for the image classification task. We also propose a novel margin loss for the self-supervised contrastive learning proxy task to better learn the representation under the data-deficient scenario. Together with other tricks, we achieve competitive performance in the VIPriors image classification challenge.

Citations (14)

Summary

We haven't generated a summary for this paper yet.