Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Are Large Language Models Capable of Deep Relational Reasoning? Insights from DeepSeek-R1 and Benchmark Comparisons (2506.23128v1)

Published 29 Jun 2025 in cs.AI

Abstract: How far are LLMs in performing deep relational reasoning? In this paper, we evaluate and compare the reasoning capabilities of three cutting-edge LLMs, namely, DeepSeek-R1, DeepSeek-V3 and GPT-4o, through a suite of carefully designed benchmark tasks in family tree and general graph reasoning. Our experiments reveal that DeepSeek-R1 consistently achieves the highest F1-scores across multiple tasks and problem sizes, demonstrating strong aptitude in logical deduction and relational inference. However, all evaluated models, including DeepSeek-R1, struggle significantly as problem complexity increases, largely due to token length limitations and incomplete output structures. A detailed analysis of DeepSeek-R1's long Chain-of-Thought responses uncovers its unique planning and verification strategies, but also highlights instances of incoherent or incomplete reasoning, calling attention to the need for deeper scrutiny into LLMs' internal inference dynamics. We further discuss key directions for future work, including the role of multimodal reasoning and the systematic examination of reasoning failures. Our findings provide both empirical insights and theoretical implications for advancing LLMs' reasoning abilities, particularly in tasks that demand structured, multi-step logical inference. Our code repository will be publicly available at https://github.com/kelvinhkcs/Deep-Relational-Reasoning.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com