Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Empowering Small VLMs to Think with Dynamic Memorization and Exploration (2506.23061v1)

Published 29 Jun 2025 in cs.CV

Abstract: Empowering Small-scale Vision-LLMs (SVLMs) with reliable thinking capabilities remains fundamentally challenging due to their limited parameter capacity and weak instruction-following abilities. Existing training paradigms, including Supervised Fine-Tuning (SFT) and Reinforcement Learning with Verifiable Reward (RLVR), impose substantial demands on the base VLM, exceeding the capabilities of SVLMs. Consequently, directly applying these paradigms to SVLMs often suffers from severe pseudo thinking traces and advantage collapse, ultimately undermining both thinking reliability and task performance. A natural solution is to combine SFT and RLVR, leveraging their complementarity to reduce the dependence on model capacity. However, the widely adopted two-stage training paradigm still performs poorly on SVLMs, as their tendency toward sub-optimal convergence hinders the trade-off and limits the benefits of the combination. To address this, we propose DyME, a novel training paradigm that Dynamically selects between Memorization (via SFT) and Exploration (via RLVR) modes at each optimization step, ensuring that every update contributes to the trade-off. Extensive experiments across diverse domains demonstrate that DyME consistently achieves this balance, and thus delivers substantial performance improvements. These results establish DyME as a practical and effective solution for empowering SVLMs with reliable thinking capabilities. GitHub: https://github.com/HKUST-LongGroup/DyME

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube