Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

BWLer: Barycentric Weight Layer Elucidates a Precision-Conditioning Tradeoff for PINNs (2506.23024v1)

Published 28 Jun 2025 in cs.LG, cs.AI, cs.NA, and math.NA

Abstract: Physics-informed neural networks (PINNs) offer a flexible way to solve partial differential equations (PDEs) with machine learning, yet they still fall well short of the machine-precision accuracy many scientific tasks demand. In this work, we investigate whether the precision ceiling comes from the ill-conditioning of the PDEs or from the typical multi-layer perceptron (MLP) architecture. We introduce the Barycentric Weight Layer (BWLer), which models the PDE solution through barycentric polynomial interpolation. A BWLer can be added on top of an existing MLP (a BWLer-hat) or replace it completely (explicit BWLer), cleanly separating how we represent the solution from how we take derivatives for the PDE loss. Using BWLer, we identify fundamental precision limitations within the MLP: on a simple 1-D interpolation task, even MLPs with O(1e5) parameters stall around 1e-8 RMSE -- about eight orders above float64 machine precision -- before any PDE terms are added. In PDE learning, adding a BWLer lifts this ceiling and exposes a tradeoff between achievable accuracy and the conditioning of the PDE loss. For linear PDEs we fully characterize this tradeoff with an explicit error decomposition and navigate it during training with spectral derivatives and preconditioning. Across five benchmark PDEs, adding a BWLer on top of an MLP improves RMSE by up to 30x for convection, 10x for reaction, and 1800x for wave equations while remaining compatible with first-order optimizers. Replacing the MLP entirely lets an explicit BWLer reach near-machine-precision on convection, reaction, and wave problems (up to 10 billion times better than prior results) and match the performance of standard PINNs on stiff Burgers' and irregular-geometry Poisson problems. Together, these findings point to a practical path for combining the flexibility of PINNs with the precision of classical spectral solvers.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.