Hierarchical Modeling and Architecture Optimization: Review and Unified Framework (2506.22621v1)
Abstract: Simulation-based problems involving mixed-variable inputs frequently feature domains that are hierarchical, conditional, heterogeneous, or tree-structured. These characteristics pose challenges for data representation, modeling, and optimization. This paper reviews extensive literature on these structured input spaces and proposes a unified framework that generalizes existing approaches. In this framework, input variables may be continuous, integer, or categorical. A variable is described as meta if its value governs the presence of other decreed variables, enabling the modeling of conditional and hierarchical structures. We further introduce the concept of partially-decreed variables, whose activation depends on contextual conditions. To capture these inter-variable hierarchical relationships, we introduce design space graphs, combining principles from feature modeling and graph theory. This allows the definition of general hierarchical domains suitable for describing complex system architectures. The framework supports the use of surrogate models over such domains and integrates hierarchical kernels and distances for efficient modeling and optimization. The proposed methods are implemented in the open-source Surrogate Modeling Toolbox (SMT 2.0), and their capabilities are demonstrated through applications in Bayesian optimization for complex system design, including a case study in green aircraft architecture.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.