SiPipe: Bridging the CPU-GPU Utilization Gap for Efficient Pipeline-Parallel LLM Inference (2506.22033v1)
Abstract: As inference workloads for LLMs scale to meet growing user demand, pipeline parallelism (PP) has become a widely adopted strategy for multi-GPU deployment, particularly in cross-node setups, to improve key-value (KV) cache capacity and inference throughput. However, PP suffers from inherent inefficiencies caused by three types of execution bubbles-load-imbalance, intra-stage, and inter-stage-which limit pipeline saturation. We present SiPipe, a heterogeneous pipeline design that improves throughput by leveraging underutilized CPU resources to offload auxiliary computation and communication. SiPipe incorporates three key techniques-CPU sampling, a token-safe execution model, and structure-aware transmission-to mitigate pipeline bubbles and improve execution efficiency. Across diverse LLMs, SiPipe achieves up to 2.1 times higher throughput, 43% lower per-token latency, and up to 23% higher average GPU utilization compared to the state-of-the-art vLLM under the same PP configuration, demonstrating its generality across LLMs and deployment scenarios.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run paper prompts using GPT-5.