HighRateMOS: Sampling-Rate Aware Modeling for Speech Quality Assessment (2506.21951v1)
Abstract: Modern speech quality prediction models are trained on audio data resampled to a specific sampling rate. When faced with higher-rate audio at test time, these models can produce biased scores. We introduce HighRateMOS, the first non-intrusive mean opinion score (MOS) model that explicitly considers sampling rate. HighRateMOS ensembles three model variants that exploit the following information: (i) a learnable embedding of speech sampling rate, (ii) Wav2vec 2.0 self-supervised embeddings, (iii) multi-scale CNN spectral features, and (iv) MFCC features. In AudioMOS 2025 Track3, HighRateMOS ranked first in five out of eight metrics. Our experiments confirm that modeling the sampling rate directly leads to more robust and sampling-rate-agnostic speech quality predictions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.