Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Demonstrating Interoperable Channel State Feedback Compression with Machine Learning (2506.21796v1)

Published 26 Jun 2025 in eess.SP and cs.AI

Abstract: Neural network-based compression and decompression of channel state feedback has been one of the most widely studied applications of ML in wireless networks. Various simulation-based studies have shown that ML-based feedback compression can result in reduced overhead and more accurate channel information. However, to the best of our knowledge, there are no real-life proofs of concepts demonstrating the benefits of ML-based channel feedback compression in a practical setting, where the user equipment (UE) and base station have no access to each others' ML models. In this paper, we present a novel approach for training interoperable compression and decompression ML models in a confidential manner, and demonstrate the accuracy of the ensuing models using prototype UEs and base stations. The performance of the ML-based channel feedback is measured both in terms of the accuracy of the reconstructed channel information and achieved downlink throughput gains when using the channel information for beamforming. The reported measurement results demonstrate that it is possible to develop an accurate ML-based channel feedback link without having to share ML models between device and network vendors. These results pave the way for a practical implementation of ML-based channel feedback in commercial 6G networks.

Summary

We haven't generated a summary for this paper yet.