Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study on Downlink CSI compression: Are Neural Networks the Only Solution? (2502.17459v1)

Published 10 Feb 2025 in eess.SP and cs.LG

Abstract: Massive Multi Input Multi Output (MIMO) systems enable higher data rates in the downlink (DL) with spatial multiplexing achieved by forming narrow beams. The higher DL data rates are achieved by effective implementation of spatial multiplexing and beamforming which is subject to availability of DL channel state information (CSI) at the base station. For Frequency Division Duplexing (FDD) systems, the DL CSI has to be transmitted by User Equipment (UE) to the gNB and it constitutes a significant overhead which scales with the number of transmitter antennas and the granularity of the CSI. To address the overhead issue, AI/ML methods using auto-encoders have been investigated, where an encoder neural network model at the UE compresses the CSI and a decoder neural network model at the gNB reconstructs it. However, the use of AI/ML methods has a number of challenges related to (1) model complexity, (2) model generalization across channel scenarios and (3) inter-vendor compatibility of the two sides of the model. In this work, we investigate a more traditional dimensionality reduction method that uses Principal Component Analysis (PCA) and therefore does not suffer from the above challenges. Simulation results show that PCA based CSI compression actually achieves comparable reconstruction performance to commonly used deep neural networks based models.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com