Does Multimodality Lead to Better Time Series Forecasting? (2506.21611v1)
Abstract: Recently, there has been growing interest in incorporating textual information into foundation models for time series forecasting. However, it remains unclear whether and under what conditions such multimodal integration consistently yields gains. We systematically investigate these questions across a diverse benchmark of 14 forecasting tasks spanning 7 domains, including health, environment, and economics. We evaluate two popular multimodal forecasting paradigms: aligning-based methods, which align time series and text representations; and prompting-based methods, which directly prompt LLMs for forecasting. Although prior works report gains from multimodal input, we find these effects are not universal across datasets and models, and multimodal methods sometimes do not outperform the strongest unimodal baselines. To understand when textual information helps, we disentangle the effects of model architectural properties and data characteristics. Our findings highlight that on the modeling side, incorporating text information is most helpful given (1) high-capacity text models, (2) comparatively weaker time series models, and (3) appropriate aligning strategies. On the data side, performance gains are more likely when (4) sufficient training data is available and (5) the text offers complementary predictive signal beyond what is already captured from the time series alone. Our empirical findings offer practical guidelines for when multimodality can be expected to aid forecasting tasks, and when it does not.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.