Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MemBench: Towards More Comprehensive Evaluation on the Memory of LLM-based Agents (2506.21605v1)

Published 20 Jun 2025 in cs.CL and cs.AI

Abstract: Recent works have highlighted the significance of memory mechanisms in LLM-based agents, which enable them to store observed information and adapt to dynamic environments. However, evaluating their memory capabilities still remains challenges. Previous evaluations are commonly limited by the diversity of memory levels and interactive scenarios. They also lack comprehensive metrics to reflect the memory capabilities from multiple aspects. To address these problems, in this paper, we construct a more comprehensive dataset and benchmark to evaluate the memory capability of LLM-based agents. Our dataset incorporates factual memory and reflective memory as different levels, and proposes participation and observation as various interactive scenarios. Based on our dataset, we present a benchmark, named MemBench, to evaluate the memory capability of LLM-based agents from multiple aspects, including their effectiveness, efficiency, and capacity. To benefit the research community, we release our dataset and project at https://github.com/import-myself/Membench.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com