Can Gradient Descent Simulate Prompting? (2506.20989v1)
Abstract: There are two primary ways of incorporating new information into a LLM (LM): changing its prompt or changing its parameters, e.g. via fine-tuning. Parameter updates incur no long-term storage cost for model changes. However, for many model updates, prompting is significantly more effective: prompted models can generalize robustly from single examples and draw logical inferences that do not occur under standard fine-tuning. Can models be modified so that fine-tuning does emulate prompting? This paper describes a method for meta-training LMs such that gradient updates emulate the effects of conditioning on new information. Our approach uses tools from gradient-based meta-learning but uses an LM's own prompted predictions as targets, eliminating the need for ground-truth labels. Subsequent gradient descent training recovers some (and occasionally all) of prompted model performance -- showing improvement on the ``reversal curse'' tasks, and answering questions about text passages after a single gradient update. These results suggest that, with appropriate initialization, gradient descent can be surprisingly expressive. Our results suggest new avenues for long-context modeling and offer insight into the generalization capabilities of gradient-based learning.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.