Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

MegaFold: System-Level Optimizations for Accelerating Protein Structure Prediction Models (2506.20686v1)

Published 24 Jun 2025 in q-bio.BM, cs.DC, cs.LG, and cs.PF

Abstract: Protein structure prediction models such as AlphaFold3 (AF3) push the frontier of biomolecular modeling by incorporating science-informed architectural changes to the transformer architecture. However, these advances come at a steep system cost, introducing: compute- and memory-intensive operators, 2D attention mechanisms, and retrieval-augmented data pipelines, which collectively hinder the scalability of AF3 training. In this work, we present MegaFold, a cross-platform system to accelerate AF3 training. MegaFold tackles key bottlenecks through ahead-of-time caching to eliminate GPU idle time from the retrieval-augmented data pipeline, Triton-based kernels for memory-efficient EvoAttention on heterogeneous devices, and deep fusion for common and critical small operators in AF3. Evaluation on both NVIDIA H200 and AMD MI250 GPUs shows that MegaFold reduces peak memory usage of AF3 training by up to 1.23$\times$ and improves per-iteration training time by up-to 1.73$\times$ and 1.62$\times$ respectively. More importantly, MegaFold enables training on 1.35$\times$ longer sequence lengths compared to PyTorch baselines without running out-of-memory, significantly improving the scalability of modern protein folding models. We open source our code at https://github.com/Supercomputing-System-AI-Lab/MegaFold/.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube