Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Why Robots Are Bad at Detecting Their Mistakes: Limitations of Miscommunication Detection in Human-Robot Dialogue (2506.20268v1)

Published 25 Jun 2025 in cs.RO, cs.CL, and cs.HC

Abstract: Detecting miscommunication in human-robot interaction is a critical function for maintaining user engagement and trust. While humans effortlessly detect communication errors in conversations through both verbal and non-verbal cues, robots face significant challenges in interpreting non-verbal feedback, despite advances in computer vision for recognizing affective expressions. This research evaluates the effectiveness of machine learning models in detecting miscommunications in robot dialogue. Using a multi-modal dataset of 240 human-robot conversations, where four distinct types of conversational failures were systematically introduced, we assess the performance of state-of-the-art computer vision models. After each conversational turn, users provided feedback on whether they perceived an error, enabling an analysis of the models' ability to accurately detect robot mistakes. Despite using state-of-the-art models, the performance barely exceeds random chance in identifying miscommunication, while on a dataset with more expressive emotional content, they successfully identified confused states. To explore the underlying cause, we asked human raters to do the same. They could also only identify around half of the induced miscommunications, similarly to our model. These results uncover a fundamental limitation in identifying robot miscommunications in dialogue: even when users perceive the induced miscommunication as such, they often do not communicate this to their robotic conversation partner. This knowledge can shape expectations of the performance of computer vision models and can help researchers to design better human-robot conversations by deliberately eliciting feedback where needed.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.