Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Irec: A Metacognitive Scaffolding for Self-Regulated Learning through Just-in-Time Insight Recall: A Conceptual Framework and System Prototype (2506.20156v1)

Published 25 Jun 2025 in cs.HC, cs.AI, and cs.IR

Abstract: The core challenge in learning has shifted from knowledge acquisition to effective Self-Regulated Learning (SRL): planning, monitoring, and reflecting on one's learning. Existing digital tools, however, inadequately support metacognitive reflection. Spaced Repetition Systems (SRS) use de-contextualized review, overlooking the role of context, while Personal Knowledge Management (PKM) tools require high manual maintenance. To address these challenges, this paper introduces "Insight Recall," a novel paradigm that conceptualizes the context-triggered retrieval of personal past insights as a metacognitive scaffold to promote SRL. We formalize this paradigm using the Just-in-Time Adaptive Intervention (JITAI) framework and implement a prototype system, Irec, to demonstrate its feasibility. At its core, Irec uses a dynamic knowledge graph of the user's learning history. When a user faces a new problem, a hybrid retrieval engine recalls relevant personal "insights." Subsequently, a LLM performs a deep similarity assessment to filter and present the most relevant scaffold in a just-in-time manner. To reduce cognitive load, Irec features a human-in-the-loop pipeline for LLM-based knowledge graph construction. We also propose an optional "Guided Inquiry" module, where users can engage in a Socratic dialogue with an expert LLM, using the current problem and recalled insights as context. The contribution of this paper is a solid theoretical framework and a usable system platform for designing next-generation intelligent learning systems that enhance metacognition and self-regulation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)