Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Learning to assess subjective impressions from speech (2506.19335v1)

Published 24 Jun 2025 in cs.SD

Abstract: We tackle a new task of training neural network models that can assess subjective impressions conveyed through speech and assign scores accordingly, inspired by the work on automatic speech quality assessment (SQA). Speech impressions are often described using phrases like cute voice.' We define such phrases as subjective voice descriptors (SVDs). Focusing on the difference in usage scenarios between the proposed task and automatic SQA, we design a framework capable of accommodating SVDs personalized to each individual, such asmy favorite voice.' In this work, we compiled a dataset containing speech labels derived from both abosolute category ratings (ACR) and comparison category ratings (CCR). As an evaluation metric for assessment performance, we introduce ppref, the accuracy of the predicted score ordering of two samples on CCR test samples. Alongside the conventional model and learning methods based on ACR data, we also investigated RankNet learning using CCR data. We experimentally find that the ppref is moderate even with very limited training data. We also discover the CCR training is superior to the ACR training. These results support the idea that assessment models based on personalized SVDs, which typically must be trained on limited data, can be effectively learned from CCR data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.