Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Comparative analysis of machine learning techniques for feature selection and classification of Fast Radio Bursts (2506.18854v1)

Published 23 Jun 2025 in astro-ph.HE, astro-ph.CO, and astro-ph.IM

Abstract: Fast Radio Bursts (FRBs) are millisecond-duration radio transients of extragalactic origin, exhibiting a wide range of physical and observational properties. Distinguishing between repeating and non-repeating FRBs remains a key challenge in understanding their nature. In this work, we apply unsupervised machine learning techniques to classify FRBs based on both primary observables from the CHIME catalog and physically motivated derived features. We evaluate three hybrid pipelines combining dimensionality reduction with clustering: PCA + k-means, t-SNE + HDBSCAN, and t-SNE + Spectral Clustering. To identify optimal hyperparameters, we implement a comprehensive grid search using a custom scoring function that prioritizes recall while penalizing excessive cluster fragmentation and noise. Feature relevance is assessed using principal component loadings, mutual information with the known repeater label, and permutation-based F\textsubscript{2} score sensitivity. Our results demonstrate that the derived features including redshift, luminosity, and spectral properties, such as the spectral index and the spectral running, significantly enhance the classification performance. Finally, we identify a set of FRBs currently labeled as non-repeaters that consistently cluster with known repeaters across all methods, highlighting promising candidates for future follow-up observations and reinforcing the utility of unsupervised approaches in FRB population studies.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.