Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation (2506.17874v2)

Published 22 Jun 2025 in stat.ML, cs.CV, and cs.LG

Abstract: In many real-world applications, ensuring the robustness and stability of deep neural networks (DNNs) is crucial, particularly for image classification tasks that encounter various input perturbations. While data augmentation techniques have been widely adopted to enhance the resilience of a trained model against such perturbations, there remains significant room for improvement in robustness against corrupted data and adversarial attacks simultaneously. To address this challenge, we introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization (W-DRO) with various data augmentation strategies to improve the robustness of the models significantly across a broad spectrum of corruptions. Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios while maintaining the accuracy on the clean datasets on a range of benchmark datasets, including but not limited to CIFAR-10-C, CIFAR-100-C, MNIST, and Fashion-MNIST. On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function closely related to the W-DRO problem.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube