Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reflective Verbal Reward Design for Pluralistic Alignment (2506.17834v1)

Published 21 Jun 2025 in cs.AI and cs.HC

Abstract: AI agents are commonly aligned with "human values" through reinforcement learning from human feedback (RLHF), where a single reward model is learned from aggregated human feedback and used to align an agent's behavior. However, human values are not homogeneous--different people hold distinct and sometimes conflicting values. Aggregating feedback into a single reward model risks disproportionately suppressing minority preferences. To address this, we present a novel reward modeling approach for learning individualized reward models. Our approach uses a LLM to guide users through reflective dialogues where they critique agent behavior and construct their preferences. This personalized dialogue history, containing the user's reflections and critiqued examples, is then used as context for another LLM that serves as an individualized reward function (what we call a "verbal reward model") for evaluating new trajectories. In studies with 30 participants, our method achieved a 9-12% improvement in accuracy over non-reflective verbal reward models while being more sample efficient than traditional supervised learning methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube