Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Monocular One-Shot Metric-Depth Alignment for RGB-Based Robot Grasping (2506.17110v1)

Published 20 Jun 2025 in cs.RO and cs.CV

Abstract: Accurate 6D object pose estimation is a prerequisite for successfully completing robotic prehensile and non-prehensile manipulation tasks. At present, 6D pose estimation for robotic manipulation generally relies on depth sensors based on, e.g., structured light, time-of-flight, and stereo-vision, which can be expensive, produce noisy output (as compared with RGB cameras), and fail to handle transparent objects. On the other hand, state-of-the-art monocular depth estimation models (MDEMs) provide only affine-invariant depths up to an unknown scale and shift. Metric MDEMs achieve some successful zero-shot results on public datasets, but fail to generalize. We propose a novel framework, Monocular One-shot Metric-depth Alignment (MOMA), to recover metric depth from a single RGB image, through a one-shot adaptation building on MDEM techniques. MOMA performs scale-rotation-shift alignments during camera calibration, guided by sparse ground-truth depth points, enabling accurate depth estimation without additional data collection or model retraining on the testing setup. MOMA supports fine-tuning the MDEM on transparent objects, demonstrating strong generalization capabilities. Real-world experiments on tabletop 2-finger grasping and suction-based bin-picking applications show MOMA achieves high success rates in diverse tasks, confirming its effectiveness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.