Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MM-AttacKG: A Multimodal Approach to Attack Graph Construction with Large Language Models (2506.16968v1)

Published 20 Jun 2025 in cs.CR and cs.CY

Abstract: Cyber Threat Intelligence (CTI) parsing aims to extract key threat information from massive data, transform it into actionable intelligence, enhance threat detection and defense efficiency, including attack graph construction, intelligence fusion and indicator extraction. Among these research topics, Attack Graph Construction (AGC) is essential for visualizing and understanding the potential attack paths of threat events from CTI reports. Existing approaches primarily construct the attack graphs purely from the textual data to reveal the logical threat relationships between entities within the attack behavioral sequence. However, they typically overlook the specific threat information inherent in visual modalities, which preserves the key threat details from inherently-multimodal CTI report. Therefore, we enhance the effectiveness of attack graph construction by analyzing visual information through Multimodal LLMs (MLLMs). Specifically, we propose a novel framework, MM-AttacKG, which can effectively extract key information from threat images and integrate it into attack graph construction, thereby enhancing the comprehensiveness and accuracy of attack graphs. It first employs a threat image parsing module to extract critical threat information from images and generate descriptions using MLLMs. Subsequently, it builds an iterative question-answering pipeline tailored for image parsing to refine the understanding of threat images. Finally, it achieves content-level integration between attack graphs and image-based answers through MLLMs, completing threat information enhancement. The experimental results demonstrate that MM-AttacKG can accurately identify key information in threat images and significantly improve the quality of multimodal attack graph construction, effectively addressing the shortcomings of existing methods in utilizing image-based threat information.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube