Almost everywhere convergence of Bochner-Riesz means for the Hermite type Laguerre expansions (2506.16958v1)
Abstract: Consider the space $\mathbb{R}+d=(0,\infty)d$ equipped with Euclidean distance and the Lebesgue measure. For every $\alpha=(\alpha_1,...,\alpha_d)\in[-1/2,\infty)d$, we consider the Hermite-Laguerre operator $\mathcal{L}\alpha=-\Delta+\arrowvert x\arrowvert2+\sum{i=1}{d}(\alpha_j2-\frac{1}{4})\frac{1}{x_i2}$. In this paper we study almost everywhere convergence of the Bochner-Riesz means associated with $\mathcal{L}\alpha$ which is defined as $S_R{\lambda}(\mathcal{L}\alpha)f(x)=\sum_{n=0}{\infty}(1-\frac{4n+2\arrowvert\alpha\arrowvert_1+2d}{R2})_{+}{\lambda}\mathcal{P}_nf(x)$. Here $\mathcal{P}nf(x)$ is the n-th Laguerre spectral projection operator and $\arrowvert\alpha\arrowvert_1$ denotes $\sum{i=1}{d}\alpha_i$. For $2\leq p<\infty$, we prove that [ \lim_{R \to \infty} S_R{\lambda}(\mathcal{L}\alpha)f = f \quad \text{a.e.} ] for all $f\in Lp({\mathbb{R}_+d})$ provided that $\lambda>\lambda(p)/2$ and $\lambda(p)=\max{d(1/2-1/p)-1/2,0}$. Conversely, we show that the convergence generally fails if $\lambda<\lambda(p)/2$ in the sense that there exists $f\in Lp({\mathbb{R}_+d})$ for $2d/(d-1)< p$ such that the convergence fails.