Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

TeSG: Textual Semantic Guidance for Infrared and Visible Image Fusion (2506.16730v1)

Published 20 Jun 2025 in cs.CV

Abstract: Infrared and visible image fusion (IVF) aims to combine complementary information from both image modalities, producing more informative and comprehensive outputs. Recently, text-guided IVF has shown great potential due to its flexibility and versatility. However, the effective integration and utilization of textual semantic information remains insufficiently studied. To tackle these challenges, we introduce textual semantics at two levels: the mask semantic level and the text semantic level, both derived from textual descriptions extracted by large Vision-LLMs (VLMs). Building on this, we propose Textual Semantic Guidance for infrared and visible image fusion, termed TeSG, which guides the image synthesis process in a way that is optimized for downstream tasks such as detection and segmentation. Specifically, TeSG consists of three core components: a Semantic Information Generator (SIG), a Mask-Guided Cross-Attention (MGCA) module, and a Text-Driven Attentional Fusion (TDAF) module. The SIG generates mask and text semantics based on textual descriptions. The MGCA module performs initial attention-based fusion of visual features from both infrared and visible images, guided by mask semantics. Finally, the TDAF module refines the fusion process with gated attention driven by text semantics. Extensive experiments demonstrate the competitiveness of our approach, particularly in terms of performance on downstream tasks, compared to existing state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.