Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 163 tok/s Pro
2000 character limit reached

AI-Driven Tools in Modern Software Quality Assurance: An Assessment of Benefits, Challenges, and Future Directions (2506.16586v1)

Published 19 Jun 2025 in cs.SE and cs.AI

Abstract: Traditional quality assurance (QA) methods face significant challenges in addressing the complexity, scale, and rapid iteration cycles of modern software systems and are strained by limited resources available, leading to substantial costs associated with poor quality. The object of this research is the Quality Assurance processes for modern distributed software applications. The subject of the research is the assessment of the benefits, challenges, and prospects of integrating modern AI-oriented tools into quality assurance processes. We performed comprehensive analysis of implications on both verification and validation processes covering exploratory test analyses, equivalence partitioning and boundary analyses, metamorphic testing, finding inconsistencies in acceptance criteria (AC), static analyses, test case generation, unit test generation, test suit optimization and assessment, end to end scenario execution. End to end regression of sample enterprise application utilizing AI-agents over generated test scenarios was implemented as a proof of concept highlighting practical use of the study. The results, with only 8.3% flaky executions of generated test cases, indicate significant potential for the proposed approaches. However, the study also identified substantial challenges for practical adoption concerning generation of semantically identical coverage, "black box" nature and lack of explainability from state-of-the-art LLMs, the tendency to correct mutated test cases to match expected results, underscoring the necessity for thorough verification of both generated artifacts and test execution results. The research demonstrates AI's transformative potential for QA but highlights the importance of a strategic approach to implementing these technologies, considering the identified limitations and the need for developing appropriate verification methodologies.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.