Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

Weakly-supervised VLM-guided Partial Contrastive Learning for Visual Language Navigation (2506.15757v1)

Published 18 Jun 2025 in cs.CV

Abstract: Visual Language Navigation (VLN) is a fundamental task within the field of Embodied AI, focusing on the ability of agents to navigate complex environments based on natural language instructions. Despite the progress made by existing methods, these methods often present some common challenges. First, they rely on pre-trained backbone models for visual perception, which struggle with the dynamic viewpoints in VLN scenarios. Second, the performance is limited when using pre-trained LLMs or VLMs without fine-tuning, due to the absence of VLN domain knowledge. Third, while fine-tuning LLMs and VLMs can improve results, their computational costs are higher than those without fine-tuning. To address these limitations, we propose Weakly-supervised Partial Contrastive Learning (WPCL), a method that enhances an agent's ability to identify objects from dynamic viewpoints in VLN scenarios by effectively integrating pre-trained VLM knowledge into the perception process, without requiring VLM fine-tuning. Our method enhances the agent's ability to interpret and respond to environmental cues while ensuring computational efficiency. Experimental results have shown that our method outperforms the baseline methods on multiple benchmarks, which validate the effectiveness, robustness and generalizability of our method.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.