Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BASE-Q: Bias and Asymmetric Scaling Enhanced Rotational Quantization for Large Language Models (2506.15689v1)

Published 26 May 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Rotations have become essential to state-of-the-art quantization pipelines for LLMs by effectively smoothing outliers in weights and activations. However, further optimizing the rotation parameters offers only limited performance gains and introduces significant training overhead: due to rotation parameter sharing, full-model must be loaded simultaneously to enable backpropagation, resulting in substantial memory consumption and limited practical utility. In this work, we identify two fundamental limitations of current rotational quantization methods: (i) rotation fails to align channel means, resulting in wider quantization bounds and increased rounding errors; and (ii) rotation makes the activation distribution more Gaussian-like, increasing energy loss caused by clipping errors. To address these issues, we introduce \textbf{BASE-Q}, a simple yet powerful approach that combines bias correction and asymmetric scaling to effectively reduce rounding and clipping errors. Furthermore, BASE-Q enables blockwise optimization, eliminating the need for memory-intensive full-model backpropagation. Extensive experiments on various LLMs and benchmarks demonstrate the effectiveness of BASE-Q, narrowing the accuracy gap to full-precision models by 50.5\%, 42.9\%, and 29.2\% compared to QuaRot, SpinQuant, and OSTQuant, respectively. The code will be released soon.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.