Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Structured and Informed Probabilistic Modeling with the Thermodynamic Kolmogorov-Arnold Model (2506.14167v1)

Published 17 Jun 2025 in cs.LG

Abstract: We adapt the Kolmogorov-Arnold Representation Theorem to generative modeling by reinterpreting its inner functions as a Markov Kernel between probability spaces via inverse transform sampling. We present a generative model that is interpretable, easy to design, and efficient. Our approach couples a Kolmogorov-Arnold Network generator with independent energy-based priors, trained via Maximum Likelihood. Inverse sampling enables fast inference, while prior knowledge can be incorporated before training to better align priors with posteriors, thereby improving learning efficiency and sample quality. The learned prior is also recoverable and visualizable post-training, offering an empirical Bayes perspective. To address inflexibility and mitigate prior-posterior mismatch, we introduce scalable extensions based on mixture distributions and Langevin Monte Carlo methods, admitting a trade-off between flexibility and training efficiency. Our contributions connect classical representation theorems with modern probabilistic modeling, while balancing training stability, inference speed, and the quality and diversity of generations.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)