Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Breaking the Multi-Enhancement Bottleneck: Domain-Consistent Quality Enhancement for Compressed Images (2506.14152v1)

Published 17 Jun 2025 in eess.IV

Abstract: Quality enhancement methods have been widely integrated into visual communication pipelines to mitigate artifacts in compressed images. Ideally, these quality enhancement methods should perform robustly when applied to images that have already undergone prior enhancement during transmission. We refer to this scenario as multi-enhancement, which generalizes the well-known multi-generation scenario of image compression. Unfortunately, current quality enhancement methods suffer from severe degradation when applied in multi-enhancement. To address this challenge, we propose a novel adaptation method that transforms existing quality enhancement models into domain-consistent ones. Specifically, our method enhances a low-quality compressed image into a high-quality image within the natural domain during the first enhancement, and ensures that subsequent enhancements preserve this quality without further degradation. Extensive experiments validate the effectiveness of our method and show that various existing models can be successfully adapted to maintain both fidelity and perceptual quality in multi-enhancement scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.